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Zeros of Hankel Functions and Poles of Scattering Amplitudes* 

JOSEPH B. KELLER, S. I. RUBINOW, t AND MAX GOLDSTEIN 

Courant Institute of Mathematical Sciences New York University, New York, New York 

The complex zero! "n(Z), n = 1, 2, ... of H.(I)(z), dH.(l)(z)/dz and dH.(1)(z)/dz + iZH,(l)(z) are 
investigated. These zeros determine the poles in the scattering amplitudes resulting from scattering 
of various kinds of waves by spheres and cylinders. Formulas for Pn(z) are obtained for both large 
and small values of Izl and for large values of n. In addition, for H,(1)(z) and dH.(l)(z)/dz, numerical 
solutions are found for real z in the interval 0.01 ~ z ~ 7 and n = 1, 2, 3, 4, 5. The resulting loci of 
"n(z) in the complex P plane are presented. These loci are the trajectories of the so-called Regge poles 
for scattering by spheres and cylinders. 

1. INTRODUCTION 

IN 1918 Watson1 discovered that a certain scatter­
ing amplitude in electromagnetic theory had 

poles at the values of /I for which H. (1) (z) = 0. 
Here H. (1) (z) is the Hankel function of the first 
kind of order /I and argument z. Similar poles have 
since been found in other scattering amplitudes at 
the zeros of other transcendental functions. Recently 
Regge2 has examined them in quantum-mechanical 
potential scattering and this has stimulated many 
other investigations. Because of the importance of 
these poles and their trajectories, we have considered 
some special cases in detail and have obtained 
asymptotic formulas and numerical results for them. 

Mathematically our investigation concerns the 
roots /In(z) , n = 1, 2, '" of the following three 
equations: 

H. (l)(z) = 0, (1) 

(djdz)H.(l)(z) = 0, (2) 

(djdz)H,<ll(Z) + iZH. (l)(z) = 0. (3) 

In (;3) Z is either a given constant or a given function 
of z and /I. Each root /In(Z) of each equation is a 
complex function of the complex argument z. We 
present some old and some new expansions of /In(z) 
for both large and small values of Izl as well as for 
large values of n for any z. In addition, with the aid 
of an electronic computer, we have computed the 
first five roots of (1) and (2) for real z in the range 
.01 S z :5. 7 and have plotted graphs of them. 
[See Figs. (1) and (2).] "\-Ve have also compared 
these "exact" numerical values with the expansions 
for large and small values of Izl, thus determining 
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2 T. Regge, Nuovo Cimento 14, 951 (1958). 

the accuracy and range of validity of these expan­
sions. 

Equation (1) determines the poles in the quantum­
mechanical scattering by a rigid sphere or cylinder, 
i.e., by a potential which is infinite within a sphere 
or cylinder and zero outside it. It also determines 
the poles in the scattering of an acoustic wave by 
an acoustically soft sphere or cylinder. In addition, 
it determines some of the poles in the scattering of 
an electromagnetic wave by a perfectly conducting 
sphere or cylinder. Equation (2) determines the 
poles in the scattering of an acoustic wave by a 
rigid cylinder and some of the poles in electro­
magnetic scattering by a perfectly conducting 
cylinder. Equation (3) determines the poles in 
acoustic or electromagnetic scattering by a cylinder 
of surface impedance Z. In all cases z = ka, where 
a is the radius of the sphere or cylinder and k = 2 'IT' lA, 
with A being the incident wavelength. 

Because of the importance of the scattering 
problems just mentioned, some studies have been 
made of the Eqs. (1)-(3). The most complete study 
of (1) is that of Magnus and Kotin,3 which led to 
the present work. In part, our analysis is similar 
to theirs. However, we succeeded in obtaining expan­
sions of /In(z) for Izi small which they did not find. 
These expansions show that Theorems 6.1 and 6.2 
of reference 3 are false, and it is then not difficult 
to locate the flaws in the proofs. Fortunately none 
of their subsequent results depend upon these 
theorems. In addition, we have found a number of 
misprints in their formulas on p. 243 for /Inez) for 
large n. The correct formulas are given below. 

2. ZEROS OF H.(l)(z) 

Let us begin by expressing H. (1) (z) III terms of 
Bessel functions by the formula 

3 'V. Magnus and L. Kotin, Numerische Math. 2, 228 
(1960). 
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FIG. 1. The zeros vn(z) of H,(1)(z) in the complex v plane 
for z real. Re Vn is plotted horizontally and 1m Vn is plotted 
vertically for n = 1, 2, 3, 4, 5, and 0 ~ Z ~ 7. The solid 
lines are the loci of vn(z) for fixed n as functions of z. The 
dashed lines connect values of vn(z) for fixed z and different 
values of n. The zeros are symmetric about v = 0 so there 
is a similar sct of curves in the third quadrant. 

isin v7rH,(l)(z) = J_.(z) - J,(zV;V:'. (4) 

The power series for J.(z) is 

(5) 

Upon using (5) for J, and J _, in (4), it becomes for 
o < Izl « 1 or Ivl » 1 + Iz12, 

i sin V7r r(v + l)(~r H, (l)(z) 

When Hp (I) (z) = 0 we transpose the quotient of 
gamma functions in (6) and take logarithms of the 
two sides of the resulting equation, obtaining 

2v(lOg ~ - i~) 
_ . rev + 1) (Z2) 
- -27rtn + log reI _ v) + 0 v + 1 . (7) 

Here n is an integer. 
For Izl « 1 it is convenient to use the following 

sm'ie's for the logarithm of the quotient of gamma 
functions: 

1 r(1 + 11) _ 2 2 ~ s(2m + 1) 2m+l 
og r(1 _ 11) - - 'Y1I - !::t 2m + 1 11 • (8) 

Here 'Y is Euler's constant and s is the Riemann 
zeta function. With the aid of (8), (7) can be re-

written as 

z i~ i7r 
log - = --- + - - 'Y 

2 11 2 

_ f t(2m + 1) 112m + o(~). (9) 
m-l 2m + 1 11 

Upon reverting the series (9) for n ~ 0 we obtain 11 

as a power series in [log (Z/2)fl. For n = 0 there 
is no root of (9) for which Ivl « 1. Denoting the 
value of v by Vn and setting z = rei~, we may write 
the result as the following series in [log (r /2)fl 

Vn = -i~[log (r/2W1{1 + [i(~ - <p) - 'Y ] 

X [log (r/2)r 1 + [i(~ - <p) - 'Y T [log (r/2W
2 

JzJ « 1. (10) 

This result for vn , which appears to be new, shows 
that all the roots Vn tend to zero as z tends to zero. 
For z real this was shown to be true by Magnus and 
Kotin. 3 However, their theorems 6.1 and 6.2, which 
describe the manner in which v" tends to zero, are 
in disagreement with (10) and are incorrect. 

To determine Vn for n large and z fixed, we again 
proceed from (7). We assume that Ivl » 1 and use 
Stirling's formula for the gamma functions in (7), 

"( 

41. // / ./ ./ 
2[ "':... /' ././ ./ 

,,,,./'1. ;:;./ ././ / 
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/' 
1.0 
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FIG. 2. The zeros vn(z) of dH,(1)(z)/dz in the complex 
v plane for z real. Re v" is plotted horizontally and 1m Vn is 
plotted vertically for n = 1, 2, 3, 4, 5, and 0 ~ z ~ 7. The 
solid lines are the loci of vn(z) for fixed n as functions of z. 
The dashed lines connect values of v,,( z) for fixed z and different 
values of n. The zeros are symmetric about v = 0 so there is 
a similar set of curves in the third quadrant. 
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which yields 

r(1 + v) . 
log r(I _ v) = 2v(log v-I + ~7r/2) 

- i7r/2 + OV1
). (11) 

Upon using (11) in (7), and assuming that !vl » 1 + 
/Z/2, we readily find for n » 1, 

Re Vn 7r(~ - ~ )(n - t{ log 27r(n
er

- t) J2 
X [1 + O(log log n/log n)], 

[ 
27r(n - 1.)J-l 

1m Vn = 7r(n - t) log er 4 

X [1 + O(log log n/log n)], n» 1. (12) 

This result was obtained by Magnus and Kotin, 
Theorem 8.1, but their formulas contain a number 
of misprints. From (12) we see that both Re Vn and 
1m Vn become infinite as n becomes infinite, but that 
1m Vn increases more rapidly than does Re Vn. 

Consequently, arg Vn tends to 7r /2 as n increases. 
This fact has led numerous authors to the false 
conclusion that Vn approaches the imaginary axis of 
the v plane as n increases. 

When Izi is large, Iv .. 1 is also large. Then for fixed 
n, Vn is given by the well known formula obtained 
by van del' Pol and Bremmer4 with the aid of 
the Debye expansion for the Bessel function, and 
refined by Franz5

; 

Vn = Z + 6- leir
/

3q"z! 

Izl »n > o. (13) 

Here q" is the nth zero of the Airy function A(q), 

A(qn) = f' cos (t 3 
- qnt) dt = o. (14) 

The first five zeros, as given by Franz,5 are listed 
in Table 1. For large values of n, q" is given by the 
asymptotic formula 

n» 1. (15) 

Equations (10) and (13) give vn(z) for both large 
and small values of Izi. To obtain vn(z) for interme­
diate values of z we have solved (1) numerically 
for Z real in the range 0.01 ~ z~ 7 and n = 1, 2, 3, 
4, 5. The resulting values of Vn are shown in Fig. 1, 
which shows the locus of each of the first five roots 
in the complex v plane. As z increases from zero 

4 H. Bremmer, Terrestrial Radio Waves (Elsevier Publish­
ing Company, New York, 1949). 

• W. Franz, Z. Naturforsch. 9a, 705 (1954). 

TABLE I. The first five zeros qn and q,,' of the Airy function 
and its derivative, respectively. In terms of them the zeros 
of H.(I)(Z) anddH.(!)(z)/dz can be expressed by(13) and (18). 

n qn q,,' 

1 3.372134 1.469354 
2 5.895843 4.684712 
3 7.962025 6.951786 
4 9.788127 8.889027 
5 11.457423 10.632519 

each root moves from the orIgm upward and to 
the right. Such loci have recently been called "Regge 
trajectories" in quantum mechanics. 

We have also compared the values of v" given by 
(10) and (13) with the numerical results. For z = 
0.01, (10) yields Re VI = 0.205, 1m VI = 0.613, 
while the numerical solution is Re VI = 0.184, 
1m VI = 0.592. For larger values of z and n the 
disagreement is greater. Thus, we conclude that 
(10) is accurate only for Izi < 0.01. On the other 
hand, for Z = 1, (13) yields Re VI = 1.871, 1m VI = 

1.706, while the numerical solution is Re VI = 1.880, 
1m VI = 1.708. This agreement is very good, and 
becomes better as Izl increases, but worse as n 
increases. However, even for n = 5 the error in 
Re Vs is only 4% and that in 1m V5 is only 1 % at 
z = 2. At z = 7, (13) yields Re VI = 8.745, 1m VI = 
3.126, while the numerical solution is Re VI = 8.746, 
1m v, = 3.127. 

We have restricted n to positive values in (12) 
and (13) and have given only the roots vn(z) with 
Re Vn ~ 0 in Fig. 1 because the roots are symmetric 
about the origin. This follows from the relation 
H- v (l)(z) = e''''Hv (I) (z). 

3. ZEROS OF dH.(I)(z)/dz 

The zeros of dH. (1) (z)/dz can be found by exactly 
the same methods as were used in the preceding 
section. Therefore, we shall give only the results. 
Since the zeros are symmetric about the origin, we 
shall again give some formulas only for positive n, 
which corresponds to zeros in the half plane Re V ~ O. 

When Izl is small we find 

Vn = -i7r(n - !)[IOg(r/2W
I {1 + [i(~ -~) -I'J 

X [log (r/2W 1 + [i(~ - ~) - I' J [log (r/2)r2 

+ ([ i(~ - ~) - I' J - S-(3)7rV /3) [log (r/2) r 3 

Iz/ « 1. (16) 
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For Ivl » 1 + Izl2 we obtain 

(
7r) [27r(n - ~)J-2 Re Vn = 7r 2 - rp (n - t) log er 4 

X [1 + O(log log n)J 
logn ' 

(n» 1) (17) 

[ 
27r(n - 2.)J-1 

1m Vn = 7r(n - j) log er 4 

X [ 1 + oeofo~o~ n) J . 
Both (16) and (17) are apparently new. The former 
shows that all v" tend to zero as z tends to zero. 
The latter shows that both Re v" and 1m v" become 
infinite as n does and that arg Vn tends to 7r /2. 

When Izl is large and n is fixed, v" is given by 
the formula 6 

X [ (q:')2 + _1_J -t + O( -1) 
180 10 f Z Z, qn 

Izl »n > O. (18) 

Here q,,' is the nth zero of A'(q) = 0 where A(q) is 
the Airy function defined in (14). The first five zeros, 
as given by Franz, are listed in Table 1. For n large, 
qn' is given by 

n» 1. (19) 

In Fig. 2 are shown the loci of values of vn(z) 
obtained by solving (2) numerically for n = 1, 2, 3, 
4, 5, and .01 ~ z ~ 7. Each root moves from the 
origin, upward and to the right, as z increases from 
zero. Comparison of the numerical solutions with 
the results given by (16) and (19) shows about the 
same agreement as in the preceding case. 

4. ZEROS OF dHp (l)(z)/dz + iZHp (l)(Z) = 0 

To solve (3) we use (6) to obtain for Izl « 1 
or Ivl » 1 + Iz12, 

2isin V7rr(v)(z/2)'+{ dH~:>Cz) + iZHp(l)(z) J 
= - r(1 + v) (1 _ i ZZ)[1 + o(~)J 

r(1 - v) v v 

Upon equating to zero the right side of (20) and 
taking logarithms of the resulting equation, we find 

2v[log (z/2) - i7r/2] = -i27r(n - !) 

+ 10 r(1 + v) + O(Zz) + O(~). 
g r(1 - v) v v 

(21) 

Let us first suppose that the impedance Z is a 
finite constant, independent of z and v. Then it 
follows from (21) that the zeros of (3) are asymptot­
ically the same as those of (1) in the two cases 
Izl « 1 and Ivl » 1 + Iz12. Thus in these two cases 
the zeros Vn of (3) are given by (16) if Izl « 1 and 
by (17) if Ivl » 1 + Izl\ with an additional error 
term O(Zz/v). The same result (16) applies if Z is 
a function of z and v such that Zz/v tends to zero 
as z tends to zero with v given by (16). Similarly (17) 
applies if Zz/v tends to zero for fixed z as v becomes 
infinite through the sequence (17). 

When Izl is large and n is fixed, Vn is given by the 
following formula, obtained by Levy and RelIer6

: 

Vn = Z + 6-V1r/3qn(Zi)zt + O(z-t), 

Izi »n > O. (22) 

Here qn(ZZl) is the nth root of the equation 

A'(q) = A (q)eS1r iI66-IZzl. (23) 

If IZztl is large, qn is given by 

qn(ZZl) = qn( ro) + e-S1riI66!(Zztrl + O(IZZt j-2). (24) 

The number q,,( ro) is the nth root of (14), to which 
(23) reduces when Zz! becomes infinite. If jZzlj is 
small, q" is given by 

qn(ZZi) = qn(O) - eS1rifG [3Z/ qn(O) ](z/6)1 

+ O(IZz!n. (25) 

Here qn(O) is the nth root of A'(q) = 0, to which 
(23) reduces when Zz! = O. 

6 B. R. Levy and J. B. Keller, Commun. Pure AppJ. 
Math. 12, 159 (1959). 
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